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Basics

• I Like Prolog

• But, I'm not an expert

• This is just an introduction
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What Is Prolog

• A logic programing language

• A declarative programming language 

• A weird programming language

Thursday, August 2, 12



Uses

• Natural Language Processing

• Grammars

• Theorem Proving

• Expert Systems and other AI
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Why Learn Prolog

• Expand your toolbox

• New perspective

• Become a polyglot
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Prolog - Weirdness

• “What”, not “How”.

• Programs are expressed as:

• Facts

• Rules

Thursday, August 2, 12



“A computation of a logic program is a 
deduction of consequences of the 

program. A program defines a set of 
consequences, which is its meaning. 

The art of logic programming is 
constructing concise and elegant 
programs that have the desired 

meaning.”

  - The Art of Prolog
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Seattle.rb Pairing
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editor(zenspider,  emacs).
editor(drbrain,    vim).
editor(phiggins,   vim).
editor(tenderlove, vim).

Facts
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?- editor(zenspider, emacs).
yes

?- editor(zenspider, vim).
no

Questions
editor(zenspider,  emacs).
editor(drbrain,    vim).
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?- editor(drbrain, Editor).
Editor = vim

Questions
editor(zenspider,  emacs).
editor(drbrain,    vim).
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editor(zenspider,  emacs).
editor(drbrain,    vim).

?- editor(Person, Editor).
Person = zenspider
Editor = emacs

Questions
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?- editor(Person1, vim),
   editor(Person2, vim),

Person1 \== Person2.
Person1 = drbrain
Person2 = tenderlove

Questions
editor(zenspider,  emacs).
editor(drbrain,    vim).
editor(tenderlove, vim).
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?- editor(Person1, Editor),
   editor(Person2, Editor),

Person1 \== Person2.
Editor  = vim
Person1 = drbrain
Person2 = tenderlove

Questions
editor(zenspider,  emacs).
editor(drbrain,    vim).
editor(tenderlove, vim).
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pair(Person1, Person2) :-
    editor(Person1, Editor),
    editor(Person2, Editor),
   Person1 \== Person2.

Rules

?- pair(Person1, Person2).
Person1 = drbrain
Person2 = tenderlove
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Questions & Rules
editor(zenspider,  emacs).
editor(drbrain,    vim).
editor(tenderlove, vim).

?- pair(drbrain, Person2).
Person1 = tenderlove
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?- pair(Person1, Person2).

Person1 = drbrain
Person2 = tenderlove ? ;

Person1 = drbrain
Person2 = phiggins ? ;

Person1 = tenderlove
Person2 = drbrain ?

Questions
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pair(Person1, Person2) :-
    editor(Person1, Editor),
    editor(Person2, Editor),
   Person1 @> Person2.

Rules

?- pair(Person1, Person2).
Person1 = tenderlove
Person2 = drbrain
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?- pair(Person1, Person2).

Person1 = tenderlove
Person2 = drbrain ? ;

Person1 = tenderlove
Person2 = phiggins ? ;

Person1 = phiggins
Person2 = drbrain ? 

Questions
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keyboard(zenspider,  dvorak).
keyboard(drbrain,    dvorak).
keyboard(tenderlove, qwerty).
keyboard(phiggins,   qwerty).

Facts
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?- keyboard(drbrain,  Keyboard).
Keyboard = dvorak

Questions
keyboard(zenspider,  dvorak).
keyboard(drbrain,    dvorak).
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pair(Person1, Person2) :-
    keyboard(Person1, Keyboard),
    keyboard(Person2, Keyboard),
   Person1 @> Person2.

Rules

?- pair(Person1, Person2).
Person1 = zenspider
Person2 = drbrain
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pair(P1, P2) :-
        editor(  P1, Editor),
        editor(  P2, Editor),
        P1 @> P2.
pair(P1, P2) :-
        keyboard(P1, Keyboard),
        keyboard(P2, Keyboard),
        P1 @> P2.

Two Rules
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?- pair(X, Y).

X = tenderlove, Y = drbrain
X = tenderlove, Y = phiggins
X = phiggins,   Y = drbrain
X = zenspider,  Y = drbrain
X = tenderlove, Y = phiggins

Questions
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super_pair(Person1, Person2) :-
    editor(Person1, Editor),
    editor(Person2, Editor),
    keyboard(Person1, Keyboard),
    keyboard(Person2, Keyboard),
    Person1 @> Person2.

Rule
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?- super_pair(Person1, Person2).

Person1 = tenderlove
Person2 = phiggins

Questions
editor(phiggins,   vim).
editor(tenderlove, vim).
keyboard(tenderlove, qwerty).
keyboard(phiggins,   qwerty).
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Pattern Matching

• In prolog pattern matching is used to 
pass arguments. 

• For example:

• human(X) will match human(bill)

• Pattern matching with variables is 
called unification

Thursday, August 2, 12



List Basics
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Examples

• []

• [1, 2, 3]

• [apples, bananas]

• [1, lemon]

• [[1, lemon], [1, lime], [2, coconuts]]
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Heads and Tails

• [1, 2, 3]

• 1 is the head 

• [2, 3] is the tail

• [H | T] (read: "H bar T")

• [H | T] matches with [1, 2, 3] as [1|[2,3]]
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Don't Care
• ‘_’ means I don't care

• [1, _, 3] could be 

• [1, 2, 3] or

• [1, pi, 3] or 

• [1, [apple, pie], 3]

• 2 don't cares can refer to different values
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def member(x, ary)
  return false if ary    == []
  return true  if ary[0] == x
  member(x, ary[1..-1])
end

Member
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def member(x, ary)
  return false if ary    == []
  return true  if ary[0] == x
  member(x, ary[1..-1])
end

Member

member(H, [H | _]).
member(X, [_ | T]):-
    member(X, T).
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?- member(2, [1, 2, 3]).

true

?- member(6, [1, 2, 3]).

no
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?- member(X, [1, 2, 3]).

X = 1 ? a

X = 2

X = 3
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?- member(6, X).

X = [6|_] ? ;

X = [_,6|_] ? ;

X = [_,_,6|_] ? 

Variables Anywhere

Thursday, August 2, 12



def length(ary)
  return 0 if ary == []
  return length(ary[1..-1]) + 1
end

Length
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def length(ary)
  return 0 if ary == []
  return length(ary[1..-1]) + 1
end

Length

length([], 0).
length([_ | T], N) :-
    length(T, N1),
   N is N1 + 1.
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?- length([a, b, c, d], 4).

yes

?- length([1, 2, 3], X).

X = 3
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?- length(X, 2).

X = [_,_]
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Circuits
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    In Out
inv(0,  1).
inv(1,  0).
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   A  B  Out
or(0, 0,  0).
or(1, 0,  1).
or(0, 1,  1).
or(1, 1,  1).
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    A  B  Out
and(0, 0,  0).
and(0, 1,  0).
and(1, 0,  0).
and(1, 1,  1).
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    A  B  Out
xor(0, 0,  0).
xor(0, 1,  1).
xor(1, 0,  1).
xor(1, 1,  0).
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     A  B  Out
nand(0, 0,  1).
nand(0, 1,  1).
nand(1, 0,  1).
nand(1, 1,  0).
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half_adder(A, B, C, S) :-
    xor(A, B, S),
    and(A, B, C).
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?- half_adder(A, B, C, S).

A = 0, B = 0, C = 0, S = 0

A = 0, B = 1, C = 0, S = 1

A = 1, B = 0, C = 0, S = 1 

A = 1, B = 1, C = 1, S = 0
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full_adder(A, B, Cin, Cout, S) :-
    half_adder(A, B, C1, S1),
    half_adder(Cin, S1, C2, S),
    or(C1, C2, Cout).
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?- full_adder(A, B, 1, Cout, 1).

A = 0, B = 0, Cout = 0
A = 1, B = 1, Cout = 1

? - full_adder(A, B, Cin, 1, S).

A = 0, B = 1, Cin = 1, S = 0
A = 1, B = 0, Cin = 1, S = 0
A = 1, B = 1, Cin = 0, S = 0
A = 1, B = 1, Cin = 1, S = 1
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mystery(A, B, D) :-
   nand(A, B, T1),
   nand(A, T1, T2),
   nand(B, T1, T3),
   nand(T2, T3, D).
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?- mystery(A, B, D).

A = 0, B = 0, D = 0 

A = 0, B = 1, D = 1

A = 1, B = 0, D = 1

A = 1, B = 1, D = 0
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Logic Puzzles
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Apartment Building
1. Adam does not live on the top floor. 

2. Bill does not live on the bottom floor.

3. Cora does not live on either the top or the bottom 
floor. 

4. Dale lives on a higher floor than does Bill.

5. Erin does not live on a floor adjacent to Cora's. 

6. Cora does not live on a floor adjacent to Bill's.
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‘Data Structure’

• A list of the people, ordered by floor

• [Top, Floor4, Floor3, Floor2, Bottom]

• [adam, bill, cora, dale, erin]
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adam \== Top,

Adam does not live on the top 
floor. 
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bill \== Bottom,

Bill does not live on the 
bottom floor.
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cora \== Top,
cora \== Bottom,

Cora does not live on either 
the top or the bottom floor. 
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higher(dale, bill, L),

 Dale lives on a higher floor 
than does Bill.
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higher(X, Y, [X | T]) :-
        member(Y, T).

higher(X, Y, [_ | T]) :-
        higher(X, Y, T).

Higher
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not_adjacent(erin, cora, L),

Erin does not live on a floor 
adjacent to Cora's. 
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not_adjacent
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not_adjacent
not_adjacent(X, Y, [X, Z | T]) :-
   Z \== Y,

    member(Y, T).
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not_adjacent

not_adjacent(X, Y, [Y, Z | T]) :-
    Z \== X,
    member(X, T).

not_adjacent(X, Y, [X, Z | T]) :-
   Z \== Y,

    member(Y, T).
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not_adjacent(X, Y, [_ | T]) :-
    not_adjacent(X, Y, T).

not_adjacent

not_adjacent(X, Y, [Y, Z | T]) :-
    Z \== X,
    member(X, T).

not_adjacent(X, Y, [X, Z | T]) :-
   Z \== Y,

    member(Y, T).
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not_adjacent(cora, bill, L),

Cora does not live on a floor 
adjacent to Bill's.
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permutation(L,
            [adam, bill, cora, dale, erin]).

permutation
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puzzle(L) :-
   L = [Top, F4, F3, F2, Bottom],

Puzzle
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puzzle(L) :-
    permutation(L, 
                [adam, bill, cora, dale, erin]),
    L = [Top, Floor4, Floor3, Floor2, Bottom],
    adam \== Top,
    bill \== Bottom,
    cora \== Top,
    cora \== Bottom,
    higher(dale, bill, L),
    not_adjacent(erin, cora, L),
    not_adjacent(cora, bill, L).

All Together
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| ?- puzzle([A, B, C, D, E]).

A = dale
B = cora
C = adam
D = bill
E = erin ? ;

no

Running
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Learn More
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Books
• Sterling, Leon & Shapiro, Ehud. The Art of Prolog

• Clocksin, William F. Clause and Effect: Prolog 
Programming for the Working Programmer

• Bratko, Ivan. Prolog Programming for Artificial 
Intelligence

• Tate, Bruce A. Seven Languages in Seven 
Weeks: A Pragmatic Guide to Learning 
Programming Languages
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Thank You
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