
A Taste of Prolog
Aja Hammerly

Thursday, August 2, 12

Basics

• I Like Prolog

• But, I'm not an expert

• This is just an introduction

Thursday, August 2, 12

What Is Prolog

• A logic programing language

• A declarative programming language

• A weird programming language

Thursday, August 2, 12

Uses

• Natural Language Processing

• Grammars

• Theorem Proving

• Expert Systems and other AI

Thursday, August 2, 12

Why Learn Prolog

• Expand your toolbox

• New perspective

• Become a polyglot

Thursday, August 2, 12

Prolog - Weirdness

• “What”, not “How”.

• Programs are expressed as:

• Facts

• Rules

Thursday, August 2, 12

“A computation of a logic program is a
deduction of consequences of the

program. A program defines a set of
consequences, which is its meaning.

The art of logic programming is
constructing concise and elegant
programs that have the desired

meaning.”

 - The Art of Prolog

Thursday, August 2, 12

Seattle.rb Pairing

Thursday, August 2, 12

editor(zenspider, emacs).
editor(drbrain, vim).
editor(phiggins, vim).
editor(tenderlove, vim).

Facts

Thursday, August 2, 12

?- editor(zenspider, emacs).
yes

?- editor(zenspider, vim).
no

Questions
editor(zenspider, emacs).
editor(drbrain, vim).

Thursday, August 2, 12

?- editor(drbrain, Editor).
Editor = vim

Questions
editor(zenspider, emacs).
editor(drbrain, vim).

Thursday, August 2, 12

editor(zenspider, emacs).
editor(drbrain, vim).

?- editor(Person, Editor).
Person = zenspider
Editor = emacs

Questions

Thursday, August 2, 12

?- editor(Person1, vim),
 editor(Person2, vim),

Person1 \== Person2.
Person1 = drbrain
Person2 = tenderlove

Questions
editor(zenspider, emacs).
editor(drbrain, vim).
editor(tenderlove, vim).

Thursday, August 2, 12

?- editor(Person1, Editor),
 editor(Person2, Editor),

Person1 \== Person2.
Editor = vim
Person1 = drbrain
Person2 = tenderlove

Questions
editor(zenspider, emacs).
editor(drbrain, vim).
editor(tenderlove, vim).

Thursday, August 2, 12

pair(Person1, Person2) :-
 editor(Person1, Editor),
 editor(Person2, Editor),
 Person1 \== Person2.

Rules

?- pair(Person1, Person2).
Person1 = drbrain
Person2 = tenderlove

Thursday, August 2, 12

Questions & Rules
editor(zenspider, emacs).
editor(drbrain, vim).
editor(tenderlove, vim).

?- pair(drbrain, Person2).
Person1 = tenderlove

Thursday, August 2, 12

?- pair(Person1, Person2).

Person1 = drbrain
Person2 = tenderlove ? ;

Person1 = drbrain
Person2 = phiggins ? ;

Person1 = tenderlove
Person2 = drbrain ?

Questions

Thursday, August 2, 12

pair(Person1, Person2) :-
 editor(Person1, Editor),
 editor(Person2, Editor),
 Person1 @> Person2.

Rules

?- pair(Person1, Person2).
Person1 = tenderlove
Person2 = drbrain

Thursday, August 2, 12

?- pair(Person1, Person2).

Person1 = tenderlove
Person2 = drbrain ? ;

Person1 = tenderlove
Person2 = phiggins ? ;

Person1 = phiggins
Person2 = drbrain ?

Questions

Thursday, August 2, 12

keyboard(zenspider, dvorak).
keyboard(drbrain, dvorak).
keyboard(tenderlove, qwerty).
keyboard(phiggins, qwerty).

Facts

Thursday, August 2, 12

?- keyboard(drbrain, Keyboard).
Keyboard = dvorak

Questions
keyboard(zenspider, dvorak).
keyboard(drbrain, dvorak).

Thursday, August 2, 12

pair(Person1, Person2) :-
 keyboard(Person1, Keyboard),
 keyboard(Person2, Keyboard),
 Person1 @> Person2.

Rules

?- pair(Person1, Person2).
Person1 = zenspider
Person2 = drbrain

Thursday, August 2, 12

pair(P1, P2) :-
 editor(P1, Editor),
 editor(P2, Editor),
 P1 @> P2.
pair(P1, P2) :-
 keyboard(P1, Keyboard),
 keyboard(P2, Keyboard),
 P1 @> P2.

Two Rules

Thursday, August 2, 12

?- pair(X, Y).

X = tenderlove, Y = drbrain
X = tenderlove, Y = phiggins
X = phiggins, Y = drbrain
X = zenspider, Y = drbrain
X = tenderlove, Y = phiggins

Questions

Thursday, August 2, 12

super_pair(Person1, Person2) :-
 editor(Person1, Editor),
 editor(Person2, Editor),
 keyboard(Person1, Keyboard),
 keyboard(Person2, Keyboard),
 Person1 @> Person2.

Rule

Thursday, August 2, 12

?- super_pair(Person1, Person2).

Person1 = tenderlove
Person2 = phiggins

Questions
editor(phiggins, vim).
editor(tenderlove, vim).
keyboard(tenderlove, qwerty).
keyboard(phiggins, qwerty).

Thursday, August 2, 12

Pattern Matching

• In prolog pattern matching is used to
pass arguments.

• For example:

• human(X) will match human(bill)

• Pattern matching with variables is
called unification

Thursday, August 2, 12

List Basics

Thursday, August 2, 12

Examples

• []

• [1, 2, 3]

• [apples, bananas]

• [1, lemon]

• [[1, lemon], [1, lime], [2, coconuts]]

Thursday, August 2, 12

Heads and Tails

• [1, 2, 3]

• 1 is the head

• [2, 3] is the tail

• [H | T] (read: "H bar T")

• [H | T] matches with [1, 2, 3] as [1|[2,3]]

Thursday, August 2, 12

Don't Care
• ‘_’ means I don't care

• [1, _, 3] could be

• [1, 2, 3] or

• [1, pi, 3] or

• [1, [apple, pie], 3]

• 2 don't cares can refer to different values

Thursday, August 2, 12

def member(x, ary)
 return false if ary == []
 return true if ary[0] == x
 member(x, ary[1..-1])
end

Member

Thursday, August 2, 12

def member(x, ary)
 return false if ary == []
 return true if ary[0] == x
 member(x, ary[1..-1])
end

Member

member(H, [H | _]).
member(X, [_ | T]):-
 member(X, T).

Thursday, August 2, 12

?- member(2, [1, 2, 3]).

true

?- member(6, [1, 2, 3]).

no

Thursday, August 2, 12

?- member(X, [1, 2, 3]).

X = 1 ? a

X = 2

X = 3

Thursday, August 2, 12

?- member(6, X).

X = [6|_] ? ;

X = [_,6|_] ? ;

X = [_,_,6|_] ?

Variables Anywhere

Thursday, August 2, 12

def length(ary)
 return 0 if ary == []
 return length(ary[1..-1]) + 1
end

Length

Thursday, August 2, 12

def length(ary)
 return 0 if ary == []
 return length(ary[1..-1]) + 1
end

Length

length([], 0).
length([_ | T], N) :-
 length(T, N1),
 N is N1 + 1.

Thursday, August 2, 12

?- length([a, b, c, d], 4).

yes

?- length([1, 2, 3], X).

X = 3

Thursday, August 2, 12

?- length(X, 2).

X = [_,_]

Thursday, August 2, 12

Circuits

Thursday, August 2, 12

 In Out
inv(0, 1).
inv(1, 0).

Thursday, August 2, 12

 A B Out
or(0, 0, 0).
or(1, 0, 1).
or(0, 1, 1).
or(1, 1, 1).

Thursday, August 2, 12

 A B Out
and(0, 0, 0).
and(0, 1, 0).
and(1, 0, 0).
and(1, 1, 1).

Thursday, August 2, 12

 A B Out
xor(0, 0, 0).
xor(0, 1, 1).
xor(1, 0, 1).
xor(1, 1, 0).

Thursday, August 2, 12

 A B Out
nand(0, 0, 1).
nand(0, 1, 1).
nand(1, 0, 1).
nand(1, 1, 0).

Thursday, August 2, 12

half_adder(A, B, C, S) :-
 xor(A, B, S),
 and(A, B, C).

Thursday, August 2, 12

?- half_adder(A, B, C, S).

A = 0, B = 0, C = 0, S = 0

A = 0, B = 1, C = 0, S = 1

A = 1, B = 0, C = 0, S = 1

A = 1, B = 1, C = 1, S = 0

Thursday, August 2, 12

full_adder(A, B, Cin, Cout, S) :-
 half_adder(A, B, C1, S1),
 half_adder(Cin, S1, C2, S),
 or(C1, C2, Cout).

Thursday, August 2, 12

?- full_adder(A, B, 1, Cout, 1).

A = 0, B = 0, Cout = 0
A = 1, B = 1, Cout = 1

? - full_adder(A, B, Cin, 1, S).

A = 0, B = 1, Cin = 1, S = 0
A = 1, B = 0, Cin = 1, S = 0
A = 1, B = 1, Cin = 0, S = 0
A = 1, B = 1, Cin = 1, S = 1

Thursday, August 2, 12

mystery(A, B, D) :-
 nand(A, B, T1),
 nand(A, T1, T2),
 nand(B, T1, T3),
 nand(T2, T3, D).

Thursday, August 2, 12

?- mystery(A, B, D).

A = 0, B = 0, D = 0

A = 0, B = 1, D = 1

A = 1, B = 0, D = 1

A = 1, B = 1, D = 0

Thursday, August 2, 12

Logic Puzzles
Thursday, August 2, 12

Apartment Building
1. Adam does not live on the top floor.

2. Bill does not live on the bottom floor.

3. Cora does not live on either the top or the bottom
floor.

4. Dale lives on a higher floor than does Bill.

5. Erin does not live on a floor adjacent to Cora's.

6. Cora does not live on a floor adjacent to Bill's.

Thursday, August 2, 12

‘Data Structure’

• A list of the people, ordered by floor

• [Top, Floor4, Floor3, Floor2, Bottom]

• [adam, bill, cora, dale, erin]

Thursday, August 2, 12

adam \== Top,

Adam does not live on the top
floor.

Thursday, August 2, 12

bill \== Bottom,

Bill does not live on the
bottom floor.

Thursday, August 2, 12

cora \== Top,
cora \== Bottom,

Cora does not live on either
the top or the bottom floor.

Thursday, August 2, 12

higher(dale, bill, L),

 Dale lives on a higher floor
than does Bill.

Thursday, August 2, 12

higher(X, Y, [X | T]) :-
 member(Y, T).

higher(X, Y, [_ | T]) :-
 higher(X, Y, T).

Higher

Thursday, August 2, 12

not_adjacent(erin, cora, L),

Erin does not live on a floor
adjacent to Cora's.

Thursday, August 2, 12

not_adjacent

Thursday, August 2, 12

not_adjacent
not_adjacent(X, Y, [X, Z | T]) :-
 Z \== Y,

 member(Y, T).

Thursday, August 2, 12

not_adjacent

not_adjacent(X, Y, [Y, Z | T]) :-
 Z \== X,
 member(X, T).

not_adjacent(X, Y, [X, Z | T]) :-
 Z \== Y,

 member(Y, T).

Thursday, August 2, 12

not_adjacent(X, Y, [_ | T]) :-
 not_adjacent(X, Y, T).

not_adjacent

not_adjacent(X, Y, [Y, Z | T]) :-
 Z \== X,
 member(X, T).

not_adjacent(X, Y, [X, Z | T]) :-
 Z \== Y,

 member(Y, T).

Thursday, August 2, 12

not_adjacent(cora, bill, L),

Cora does not live on a floor
adjacent to Bill's.

Thursday, August 2, 12

permutation(L,
 [adam, bill, cora, dale, erin]).

permutation

Thursday, August 2, 12

puzzle(L) :-
 L = [Top, F4, F3, F2, Bottom],

Puzzle

Thursday, August 2, 12

puzzle(L) :-
 permutation(L,
 [adam, bill, cora, dale, erin]),
 L = [Top, Floor4, Floor3, Floor2, Bottom],
 adam \== Top,
 bill \== Bottom,
 cora \== Top,
 cora \== Bottom,
 higher(dale, bill, L),
 not_adjacent(erin, cora, L),
 not_adjacent(cora, bill, L).

All Together

Thursday, August 2, 12

| ?- puzzle([A, B, C, D, E]).

A = dale
B = cora
C = adam
D = bill
E = erin ? ;

no

Running

Thursday, August 2, 12

Learn More

Thursday, August 2, 12

Books
• Sterling, Leon & Shapiro, Ehud. The Art of Prolog

• Clocksin, William F. Clause and Effect: Prolog
Programming for the Working Programmer

• Bratko, Ivan. Prolog Programming for Artificial
Intelligence

• Tate, Bruce A. Seven Languages in Seven
Weeks: A Pragmatic Guide to Learning
Programming Languages

Thursday, August 2, 12

Thank You

Thursday, August 2, 12

